111 research outputs found

    Characterization of the association between 8q24 and colon cancer: gene-environment exploration and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide association studies and subsequent replication studies have shown that single nucleotide polymorphisms (SNPs) in the chromosomal region 8q24 are associated with colorectal cancer susceptibility.</p> <p>Methods</p> <p>We examined 11 SNP markers in the 8q24 region between 128.47 and 128.54 Mb, using a total of 1,987 colon cases and 2,339 controls who self-reported as white from two independent, well-characterized study populations. Analysis was performed separately within each study, and combined using random effects meta-analysis. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95% CIs) and to test for effect modification by known colon cancer risk factors. We also performed a meta-analysis combining our results with previous studies.</p> <p>Results</p> <p>We observed evidence of association for four SNPs in low to high linkage disequilibrium (r<sup>2 </sup>ranging from 0.18 to 0.93) localized in a 16.2 kb region defined by rs10505477 and rs1056368. The combined results for our two studies of colon cancer showed an OR of 1.10 (95% CI: 1.01-1.20, P<sub>trend </sub>= 0.023), and a meta-analysis of our results with previously reported studies of colon and colorectal cancer strongly support the association for this SNP (combined OR for rs6983267 = 1.21, 95% CI: 1.18-1.24, p = 5.5 × 10<sup>-44</sup>). We did not observe any notable evidence of effect modification by known colon cancer risk factors, and risk did not differ significantly by tumor site or stage.</p> <p>Conclusions</p> <p>Our study confirms the association between polymorphisms on chromosome 8q24 and colon cancer risk and suggests that the susceptibility locus in region 8q24 is not strongly modified by various lifestyle, environmental, and demographic risk factors for colon cancer.</p

    Prenylation Inhibition-Induced Cell Death in Melanoma: Reduced Sensitivity in BRAF Mutant/PTEN Wild-Type Melanoma Cells.

    Get PDF
    While targeted therapy brought a new era in the treatment of BRAF mutant melanoma, therapeutic options for non-BRAF mutant cases are still limited. In order to explore the antitumor activity of prenylation inhibition we investigated the response to zoledronic acid treatment in thirteen human melanoma cell lines with known BRAF, NRAS and PTEN mutational status. Effect of zoledronic acid on proliferation, clonogenic potential, apoptosis and migration of melanoma cells as well as the activation of downstream elements of the RAS/RAF pathway were investigated in vitro with SRB, TUNEL and PARP cleavage assays and videomicroscopy and immunoblot measurements, respectively. Subcutaneous and spleen-to-liver colonization xenograft mouse models were used to evaluate the influence of zoledronic acid treatment on primary and disseminated tumor growth of melanoma cells in vivo. Zoledronic acid more efficiently decreased short-term in vitro viability in NRAS mutant cells when compared to BRAF mutant and BRAF/NRAS wild-type cells. In line with this finding, following treatment decreased activation of ribosomal protein S6 was found in NRAS mutant cells. Zoledronic acid demonstrated no significant synergism in cell viability inhibition or apoptosis induction with cisplatin or DTIC treatment in vitro. Importantly, zoledronic acid could inhibit clonogenic growth in the majority of melanoma cell lines except in the three BRAF mutant but PTEN wild-type melanoma lines. A similar pattern was observed in apoptosis induction experiments. In vivo zoledronic acid did not inhibit the subcutaneous growth or spleen-to-liver colonization of melanoma cells. Altogether our data demonstrates that prenylation inhibition may be a novel therapeutic approach in NRAS mutant melanoma. Nevertheless, we also demonstrated that therapeutic sensitivity might be influenced by the PTEN status of BRAF mutant melanoma cells. However, further investigations are needed to identify drugs that have appropriate pharmacological properties to efficiently target prenylation in melanoma cells

    Resistance of a Rodent Malaria Parasite to a Thymidylate Synthase Inhibitor Induces an Apoptotic Parasite Death and Imposes a Huge Cost of Fitness

    Get PDF
    BACKGROUND: The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. METHODOLOGY/PRINCIPAL FINDINGS: To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. CONCLUSIONS/SIGNIFICANCE: The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance

    Transitions at CpG Dinucleotides, Geographic Clustering of TP53 Mutations and Food Availability Patterns in Colorectal Cancer

    Get PDF
    Colorectal cancer is mainly attributed to diet, but the role exerted by foods remains unclear because involved factors are extremely complex. Geography substantially impacts on foods. Correlations between international variation in colorectal cancer-associated mutation patterns and food availabilities could highlight the influence of foods on colorectal mutagenesis. mutations from 12 countries/geographic areas. For food availabilities, we relied on data extracted from the Food Balance Sheets of the Food and Agriculture Organization of the United Nations. Dendrograms for mutation sites, mutation types and food patterns were constructed through Ward's hierarchical clustering algorithm and their stability was assessed evaluating silhouette values. Feature selection used entropy-based measures for similarity between clusterings, combined with principal component analysis by exhaustive and heuristic approaches. hotspots. Pearson's correlation scores, computed between the principal components of the datamatrices for mutation types, food availability and mutation sites, demonstrated statistically significant correlations between transitions at CpGs and both mutation sites and availabilities of meat, milk, sweeteners and animal fats, the energy-dense foods at the basis of “Western” diets. This is best explainable by differential exposure to nitrosative DNA damage due to foods that promote metabolic stress and chronic inflammation

    Targeted plant improvement through genome editing: from laboratory to field

    Get PDF
    This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.European Cooperation in Science and Technology (COST) CA18111info:eu-repo/semantics/publishedVersio

    On the typology and the worship status of sacred trees with a special reference to the Middle East

    Get PDF
    This article contains the reasons for the establishment of sacred trees in Israel based on a field study. It includes 97 interviews with Muslim and Druze informants. While Muslims (Arabs and Bedouins) consider sacred trees especially as an abode of righteous figures' (Wellis') souls or as having a connection to their graves, the Druze relate sacred trees especially to the events or deeds in the lives of prophets and religious leaders. A literary review shows the existence of 24 known reasons for the establishment of sacred trees worldwide, 11 of which are known in Israel one of these is reported here for the first time. We found different trends in monotheistic and polytheistic religions concerning their current worship of sacred trees
    corecore